4. Chains and Contractions: the Proof of Proposition 10.

To prove Proposition 10 we need some facts about particular chains
under contractions.

Suppose X is an abstract simplicial complex, {u,w} = 7 € Sl(X), and
q is the labelling of V(X) contracting # to w. We say an 7-suspension
pair (7,7*) is coherently oriented if q#(r) = q#(r*). The simplices 7
and 7* are coherently oriented if and only if the set of oriented
simplices {r,7*} equals one of the following: (i) {[u],[w]}; (ii)
{[v,u],[v,w]} for some v € V(X)\n; or (iii) {[u,re],[w,re]} for some
orientation of Tor |

Proposition 7. Suppose that c is a p-chain of X with coefficients
in some abelian group I'. Then ¢ € Ker qy if and_only if

(i) c(r) =0 if 7 is an oriented p-simplez of Asusp(n;X), and

(i1) c(7) + c(r*) = 0 if (7,7*) is a coherently oriented
n-suspension pair of p-simplices.

Proof. Suppose c € Ker Ay - Let 7 be an unoriented p-simplex in
Asusp(n,X). Consider 7 = q(7). dim 7 = dim 7 and q'l(x) = {r}. Suppose
7 is oriented and orient 7 so that q#(r) = 7. Because c € Ker Ay 0
= (q#(c))(r) = ¢(7), by Lemma 6.

Let (7,7*) be a coherently oriented 75-suspension pair of p-simplices

of X. Consider = = q(7) = q(7*). Now q-l(r) C {r,7*,m*r*} and p = dim 7

dim 7 = dim 7*, but dim (7x7*) = p+1. We can orient 7 so that q#(r)

r. Then because 7 and 7* are coherently oriented q#(r*) = 1. Because
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dim (r*7*) # p, by Lemma 6, c(7r) + c(7*) = (q#(c))(x), which is 0 since
c € Ker Qy-

Conversely, suppose c satisfies conditions (i) and (ii). Let 7 be
an oriented p-simplex in q(X). Recall that there must be a p-simplex
7 € X such that q(7) = r. Orient 7 so that q#(r) = r. If 7 € Asusp(n,X)
then qfl(w) = {r} and so by Lemma 6 (q#(c))(r) =¢{r)=0. I
7 € Susp(n,X) then qﬁl(r) C {r,7*,m*7*} and q(7*) = r; because dim 7 = p
= dim 7* and dim (7*7*) # p, by Lemma 6 (q#(c))(r) =c¢(r) + c(r*) if r*
is also oriented so that q#(r*) = 7. In this case 7 and 7* are
coherently oriented and so (q#(c))(w) = ¢(r) + ¢(7*) = 0. Finally, if
7 € St(n,X) then dim 7 = dim 7 - 1, contradicting our choice of 7. Hence
for any oriented p-simplex 7 in q(X) we have (q#(c))(r) = 0. Thus q#(c)
= 0. Q.E.D.

Proposition 8. For p > 0 suppose that c is a p-cycle of X with
coefficients in some abelian group I'. If c is carried by
St(n,X) U Susp(n,X), then q#(c) = 0.

Proof. Suppose 7 is an oriented p-simplex of Asusp(#,X). Because c
is carried by St(7n,X) U Susp(n,X) we have c(7) = 0.

Suppose 7 is an oriented p-simplex in Susp(n,X). Orient 7 so that
7 and 7* are coherently oriented. Because p > 0, {r,7*} # {[u],[w]}.

If {r,7*} = {[u,7,],[w,7,]} for some orientation of 7, then
consider de(r,). 7, appears in B[U,re] and 3[w,re] with + signs. Any
other unoriented p-simplex p containing Ta contains neither u nor w and
so is not in St(n,X) U Susp(7,X); hence for either orientation of p, c(p)
= 0 by hypothesis. So by Lemma 5 6c(re) = c([u,re]) + c([w,re]).

Because ¢ is a cycle we have 0 = c(7) + c(7%).
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Otherwise {r,7*} = {[v,u],[v,w]} for some v € V(X)\7 and so 7,

= [v]. By an argument similar to that used above we still have 0
= ¢c(1) + (7).

Thus ¢ € Ker qy by Proposition 7. (.E.D.

Proposition 9. [Let X be the p-completion of X over . Suppose that
c is a (p-1)-cyele of X with coefficients in some abelian group T, and
that ¢ is carried by Susp(n,X).

(i) If P1> Pgs Pgs - = - 5 Py GTE the distinct (p-2)-simplices in
Eq(n,ﬁ), arbitrarily oriented, then there exist unique 81> 89>

k
83> + + + 5 g inT such thet c = .Elgi([w,pi]—[u,pi]).
1=

(ii) There is a unique p-chain b carried by St(n,X) such that db

k
=c. It isb= Yguwp].
=1

Proof. (i) For 1 < i < k, because p; € Eq(n,X) we have that the
pair of oriented (p-1)-simplices 7, = [u,p;] and r.* = [w,p.] is a
coherently oriented 75-suspension pair. By the definition of the
suspension of 7 in X, (TI,TI*), (19579%), (73,73*), ooy (T 7¥) must
be exactly the distinct g-suspension pairs of (p-1)-simplices in X.
Because ¢ is a (p-1)-cycle carried by Susp(n,X), by Proposition 8 q#(c)
= 0 and so by Proposition 7 ¢(r;) = -c(r;*) for 1 < i < k. Setting g;
= ¢(r;*) for 1 < i <k gives us ¢ = i]éllgi([w,pi]-[u,pi]) because ¢ is
carried by the the (p-1)-simplices of Susp(#n,X). Because the suspension
pairs (7,7,%), (79,79*), (79,73%), . . ., (7,7 *) are distinct g,, g,

g3> -+ + - > G are unique.
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k
(ii) Because c is a cycle 0 = dgc = ¥ gi(pi—[w,@pi]—pi+[u,6pi])
=1

k
= X g;([u,dp;]- [w,0p;]). Because w does not appear in [u,dp;] for any
=1

k =
i, this implies _Eigi[w,api] = 0. By the definition of X, [u,w,pi] is an
=

oriented p-simplex of X for 1 < i < k. Hence each oriented p-simplex

k
appearing in the chain [u,w,@pi] actually is in X. So ¥ gi[w,ﬁpi] = {)
i=1

k
implies ¥
V=

[u,w,dp.] = 0.

k
Consider b = ¥ g.[u,w,p;]. By the definition of X, as noted above,
i=1

e

b is indeed a p-chain on X and is clearly carried by St(7,X).
k

Furthermore db = ¥ g, ([w,p;]- [u,p;]+[u,w,dp;]) = c + 0 = c.
i=1

Conversely, suppose that b is a p-chain carried by St(7,X) such that
db = c. Recall that the distinct p-simplices in St(y,X) are precisely

N % Pys N * Pos 1% p3s - - - 5 N % py by the definition of X. Hence b
k

= .5
i=1

k k
Z 81 (vps]-[0py]) = e = b = Ehy([w,p]- [wp5]+[u,w,0p5]). For 1

hi[u,w,pi] for some hy, hy, h3, ¢« o by inT. Then

<1<k, because n N p; = 0 neither of the terms [w,pi] or [u,pi] can be
either orientation of any the terms containing both u and w. Then

because Pis Pos Pgs - - - 5 P are distinct we must have gy = hi for 1
k

S i S k. ThllS b = E gi[u,w,pi]- Q-E.D.
121

Proposition 10. Suppose c; ts a p-chain of X with coefficients in

some abelian group T'. If c; is carried by Ast (n,X) and 3ci 18 carried by



Susp(n,X) then there is a unique chain b, carried by St(n,X) such that
abi = aCi.
Proof. Because 3ci is a (p-1)-cycle, Proposition 10 directly

follows from Proposition 9. (.E.D.
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5. The Difference Between q(supp Ei) and supp q#(éi): the Proof of

Proposition 13.

One technical problem we encounter is that a contraction, as used in
Whiteley's theorem, is a simplicial map, while our category of minimal
cycle complexes is defined by chains. Recall that one of the pieces into
which we broke up the example complex in Chapter 3 is a tetrahedron,
which q maps to a 2-simplex while the chain map qy maps to 0. This is
essentially the only difference between q and q# and we show this in this
chapter.

Suppose X is an abstract simplicial complex with a 1-simple
n = {u,w}, and let q be the labelling of V(X) contracting 7 to w.

Lemma 11 simply says that if ¢ is a p-chain of X then supp q#(c) is
always a subcomplex of q(supp c), and that if they differ by a p-simplex
then this p-simplex must be part of a set of p-simplices which form a
subchain of ¢ that qy collapses to 0. We do not need the special
properties of q to prove this: it is true of any simplicial map.

Lemma 11. (i) If ¢ is a p-chain of X with coefficients in some
abelian group T, then supp q#(c) ts a subcomplex of q(supp c¢), i.e. the
support of the image under ay of the chain c is a subcomplex of the image
under q of the support of c. C(learly both complezes are subcomplezes of
q(X).

(i¢) If 7 is a p-simplex in q(supp c) that is not in supp q#(c), and
if S’ is the set of distinct p-simplices of supp c in q'l(r), then there
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are at least 2 distinct p-simplices in S’, and for any orientation of 7
and the elements of S’ such that q#(a) = 7 whenever ¢ € S', we have that

c(a) # 0 if 0 € S’ and that £ c(q) = 0.
g€es’

Proof. (i) Let p € supp q#(c). Then p is a nonempty subset of some
p-simplex 7 in q(X) such that (q#(c))(r) # 0. Let T be the set of
p-simplices of X in q_l(r). By Lemma 6 since (q#(c))(r) # 0 we have that
T is nonempty; furthermore, let us orient 7 and the elements of T so that

q#(a) = 7 for each ¢ € T: then ETC(J) = (q#(c))(r) # 0. Hence there is
o

an oriented p-simplex ¢ in X such that q#(a) = 7 and c(o) # 0. Because
c(e) # 0 we have ¢ € supp ¢, implying 7 € q(supp c). Because q(supp c)
is an abstract simplicial complex and @ # p C 7 € q(supp c), we have
p € q(supp c¢). Thus supp q#(c) C q(supp c).

(ii) Suppose that 7 is a p-simplex in q(supp c¢) that is not in
supp q#(c). By the definition of q(supp c) there is a simplex p € supp c
such that q(p) = 7. In fact there must be a p-simplex ¢ C p such that
q(¢) = 7. So S’ is nonempty. Clearly S’ is a subset of S, the set of
p-simplices of X in q’l(r). Orient 7 and the elements of S so that q#(a)

= 7 for each ¢ € S. By Lemma 6 ESc(a) = (q#(c))(r). Because 7 is a
(S

p-simplex of q(X) that is not in supp q#(c) it follows that 0

(q#(c))(r) = Ssc(a). If ¢ € S\S” then ¢ is not in supp c, and so c(o)
(S

0. Hence ZS c(s) = 0. Finally, since the p-simplices in S’ are all
o€S’

in supp ¢ it follows that ¢ in nonzero on all of them. Because S’ is

nonempty this forces it to contain at least 2 simplices. Q.E.D.
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We will want to use the second part of Lemma 11 to show exactly how
q(supp éi) and supp q#(éi) differ when ¢. is one of the completed
p-cycles which form the basis of our decomposition of a cycle complex.
Hence we need to show that when c¢ is a p-cycle and q(supp c)

# supp q#(c), then q(supp ¢.) and supp q#(éi) do differ by a p-simplex.
This does depend on the properties of q.

Lemma 12. Suppose that c is a p-cycle of X with coefficients in
some abelian group T. If supp q#(c) # q(supp c¢), then there is a
p-simplez in q(supp ¢) that is not in supp q#(c).

Proof. If supp q#(c) # q(supp c¢), then by the first part of
Lemma 11 there is some simplex 7 which is in q(supp c¢) but not in
supp q#(c). Because 7 is in q(supp c¢) there is a simplex ¢ € supp c¢ such
that q(¢) = r. By the definition of supp ¢ there must be a p-simplex
T € supp ¢ C X such that 7 contains ¢ and c(r) # 0 when 7 is oriented.

It is clear that because ¢ C 7 we have 7 = q(¢) C q(r), so because 7 is
not in supp q#(c) neither is q(r). Since q(7) is in q(supp c), if it is
a p-simplex we are done. Otherwise dim q(7) < p and hence = must be in
St(n,X) (and p must be positive); we assume this for the remainder of the
proof.

Orient 7 so that = = [u,w,p] for some oriented (p-2)-simplex p (if p
= 1 the argument for r = [u,w] is similar to what follows). Consider the
oriented (p-1)-simplex [w,p]. Let S be the set of p-simplices of X
containing [w,p]. S is nonempty because r € S. Hence if the elements of
S are oriented so that [w,p] appears in dr with a + sign for each ¢ € S,

then de([w,p]) = X c(¢). Because c is a cycle 0 = dc([w,p]) = X c(o).
oES TES
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But c(r) # 0. Hence [w,p] also appears in do with a + sign for some
oriented p-simplex ¢ # 7 such that c(¢) # 0. Because c(¢) # 0,

o € supp c. Because [w,p] appears in do with a + sign ¢ can be written
as [v,w,p] for some vertex v # u.

Recall that q(7) = p * {w} is not in supp q#(c). Now q(o)
= ¢ D q(r) so therefore ¢ also is in q(supp c¢) but not in supp q#(c).
Because ¢ is a p-simplex we are done. (.E.D.

We are now ready to prove Proposition 13.

Proposition 13. Let X be the completion of X over n for some p > 2.
Suppose that C; iS a p-chain on X with coefficients in some abelian group
' and that c; is carried by Ast(n,X) and that 3ci ts carried by
Susp(n,X). If c; ¢s minimal modulo Susp(n,X), then

(i) the chain q#(éi) is a minimal p-cycle on the complez q(X), and

(i) either the complez q(supp Ei) equals the support complex of
q#(éi) or else the support complex of ¢; s the simplez boundary complex
A(V(supp €;)) on its own vertes set.

Proof. (i) 3(q#(éi)) = q#(ﬁéi) = q#(O) = 0. To show that q#(éi) is
minimal let s’ be a subcycle of q#(éi) and define a p-chain s on X by

oy [ei(a) if ay(0) # 0 and 5’ (ay(0)) # 0,
0 otherwise.
The proof that s is a subchain of ¢, such that q#(s) =8’ is
straightforward.

Suppose ¢ is an oriented p-simplex in St(p,X). Then dim q(¢) < p so
q#(a) = 0. By definition s(s) = 0. Thus s is carried by Ast(n,X).
Because €. and ¢, are identical on Ast(7p,X) it follows that s is a

subchain of Cy-
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We have q#(as) = 6(q#(s)) = s’ = 0. Hence by Proposition 7, ds is
trivial on Asusp(p,X), i.e. is carried by St(7,X) U Susp(n,X). But
because s is carried by Ast(n,X), ds is carried by Ast(n,X). Therefore
ds is carried by Susp(n,X).

Hence because ¢, is minimal modulo Susp(n,X) either s = 0 or s = c;.
Clearly s = 0 implies that s’ = q#(s) =0. If s-= cy then s’ = q#(ci)
= q#(éi). Hence q#(éi) is minimal.

(ii) Suppose that supp q#(éi) # q(supp ¢;). By Lemma 12 there is a
p-simplex 7 in q(supp c;) that is not in supp q#(ci). Then by Lemma 11,
if S’ is the set of distinct p-simplices of supp Ei in qfl(r), then there
are at least 2 distinct p-simplices in S/, and for any orientation of 7

and the elements of S’ such that q#(a) = 7 whenever ¢ € S’, we have that

c;(¢) # 0 if ¢ € " and that T c;(0)
oeS’

does not decrease under the contraction q so ¢ must be in Ast(p,X);

0. If ¢ €S’ the dimension of ¢

furthermore, because there are at least 2 distinct p-simplices in

q'l(q(a)), ¢ cannot be in Asusp(n,X): thus ¢ must be in Susp(7,X) and so

the p-simplices in q'l(q(a)) must be exactly ¢ and ¢*. Hence w € 7.

Orient 7. We defined p-complete only when p > 2, so there is an oriented

(p-1)-simplex p such that 7 = [w,p]. Then {e,0*} = {[u,p],[w,p0]}-
Without loss of generality let ¢ = [w,p] and ¢* = [u,p]. Let g

= ¢;(0) and g* = c;(¢%). Recall that c;(s) + c;(¢*) = 0 so that g*¥ = -g.

We have that gr + g*¢* is a subchain of c; and that d(ge + g*s*)

= 0(gr - g0*) = g(p - [w,0p] - p + [u,dp]) = g([u,dp] - [w,dp]), which is

carried by Susp(n,X). By hypothesis c, is minimal modulo Susp(y,X) and

50 ¢; = go + g¥o*.
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By Proposition 9 the unique p-chain b carried by St(n,X) such that
ob = dc; is b = -g[u,w,dp]. Hence ¢, = g([w,p] - [u,p] - [u,w,dp])
= gd[u,w,p]. Because 7 € supp ¢, if and only if r is a nonempty proper

subset of {u,w} * p = V(supp &;) we have supp &, = A(V(supp €;)). Q.E.D.



6. The Proofs of Propositions 14 and 15.

Proposition 14. If a graph G has a vertex covering subgraph family
of generically d-rigid subgraphs that is vertexr connected with
multiplicity d then G is generically d-rigid.

Proof. Suppose that G has a vertex covering subgraph family F of
generically d-rigid subgraphs that is vertex connected with multiplicity
d. Let k = |F|. Choose any subgraph in F and call it Gy. Set A1 = {Gl}

and By = F\A;. Note that [A | = 1 and that Hgﬁ H =G, is generically
1

d-rigid by hypothesis. We proceed recursively as follows:
Whenever 1 < i < k suppose that {Ai,Bi} is a bipartition of F such

that |Ai| =1 and UA H is a generically d-rigid subgraph of G. Because
HeA.
i

F is vertex connected with multiplicity d there is a graph Gi+1 € Bi with

d vertices in common with some graph in A; and so with UA H. By
HeA.
i

hypothesis Gi+1 is generically d-rigid and so by Proposition 3

(HEA-H) UG;, , is generically d-rigid. Hence if we let A. ,
1

bipartition of F (unless i+l = k) such that [A; ,[ = i+1 and UA His a
HeA.
1+1

generically d-rigid subgraph of G.
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We conclude that A, = F and that U H is a generically d-rigid
HeF

subgraph of G. Because F is vertex covering U H spans G. Thus by
HeF

Proposition 2, G is generically d-rigid. Q.E.D.
Proposition 15. et X be an abstract simplicial complex with {u,w}
=17 € Sl(X). For some p > 2, let c be a p-cycle on X with coefficients

in some abelian group T', let ¢’ be the restriction of ¢ to Ast(n,X), and

let X be the p-completion of X over 5. If {Cl’CZ’c3’ y & W ,ck} IS a
_ k

decomposition of ¢’ modulo Susp(n,X), then X éi = ¢, where éi ts the
i=1

completion of c; over for 1 < i< k. If, in addition, c is minimal and

Gi denotes the 1-skeleton of supp éi for 1 < i <k, then

k
{Gl’Gz’G3’ R ,Gk} ts a verter covering subgraph family of U G, that
1=1

ts vertex connected with multiplicity p+1.

k k
Proof. The cycle ¥ ¢ equals the sum of the chain X c; = ¢’ and
i=1 i=1

some chain carried by St(y,X). Because the completion of ¢’ over 7 is

k
unique, X ¢; = c.
1=1

If, in addition, c is minimal, let {A,B} be a bipartition of
{1,2,3, . . . ,k}. Hence both A and B are nonempty. Thus we have that 0
+ ¥ c; #c¢’ and 0 £ ¥ cs + c¢’. It follows that 0 # ¥ Ei # ¢ and 0

ieA ieB ieA
$# X ¢; # c. Because ¢ is minimal X ¢; cannot be a subcycle of c.
i€B ieA
Hence there is a p-simplex ¢ such that 0 # ( X Ei)(a) # c(o). Because
ieA
k
Y & =cwe have 0 # (X €.)(s) also. Thus for some indices a in A and
1=1 i€B

b in B we have éa(a) and éb(a) to be nontrivial. Because both supp ¢,
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and supp éb contain the p-simplex o, V(Ga) and V(Gb) have at least p+1

common elements. Clearly then {Gl,G2,G3, R ’Gk} is a vertex covering
k

subgraph family of U Gi that is vertex connected with multiplicity p+l.
i=1

(.E.D.



7. The Proof of the Result.

Theorem. The 1-skeleton of a minimal (d-1)-cycle complex, d > 3, is
generically d-rigid.

Proof. We use induction on the number of vertices in the complex.
Recall we noted that if d-1 > 0, all (d-1)-cycle complexes have at least
d+1 vertices; furthermore there are minimal (d-1)-cycle complexes with
only d+1 vertices, and the 1-skeletons of these complexes are complete
graphs, which are generically d-rigid by Proposition 1.

Suppose X is a minimal (d-1)-cycle complex with more than d+1
vertices and assume that the 1-skeleton of any minimal (d-1)-cycle
complex with fewer vertices than X is generically d-rigid. Let ¢ be a
minimal (d-1)-cycle on X with coefficients in some abelian group I' such
that supp ¢ = X. Let {u,w} = 5 be any 1-simplex of X. Because d-1 > 2
we can form the (d-1)-completion of X over 7, which we denote by X. Let
¢’ be the restriction of ¢ to Ast(y,X). It follows that dc’ is carried
by Susp(n,X). Recall that c cannot be carried by St(y,supp c¢) = St(7,X),
so ¢’ is nontrivial. Hence there is a maximal decomposition
D = {c;,¢9sCq, - - - ¢} of ¢’ modulo Susp(n,X).

Let 1 < i < k. By the definition of D we know that ¢ is a
(d-1)-chain carried by Ast(7,X) and that dc; is carried by Susp(n,X). By
Proposition 10 the unique completion of c; over 7 exists and we denote it
by €;. Let q be the labelling of V(X) = V(X) contracting 5 to w. Recall

that ¢ cannot be carried by Ast(n,supp c) = Ast(n,X), so ¢’ is a proper
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subchain of ¢, and ¢ is a nontrivial proper subchain of c. Since c is a
minimal cycle, c; is not a cycle; recall that therefore 5 is a member of
the support complex of the completion of c; over 7, i.e. n € supp Ei.
Thus q does contract an edge of supp éi. Because D is maximal c; is
minimal modulo Susp(n,X) and hence by Proposition 13 q#(éi) is a minimal
(d-1)-cycle on q(X) and either supp q#(éi) = q(supp Ei) or supp éi
= A(V(supp éi), the simplex boundary complex on its own vertex set.

Let Gi be the 1-skeleton of supp € Then the 1-skeleton of
q(supp éi) is q(Gi). If q(supp Ei) = supp q#(ﬁi) then q(supp Ei) is a
minimal (d-1)-cycle complex without the vertex u and so by the induction
hypothesis qi(Gi) is generically d-rigid. Because supp €; is a
(d-1)-cycle complex, 5 is an edge of at least 2 distinct (d-1)-simplices
of supp ¢ss thus » is an edge in at least d-1 distinct triangles of G,.
Thus by Theorem 4 the generic d-rigidity of q(G;) implies the gemeric
d-rigidity of ;. On the other hand, if supp &; = A(V(supp ¢;)) then

because d-1 > 0, Gi is a complete graph and so generically d-rigid.

k k
By Proposition 15 X éi = c; hence clearly X = supp ¢ C U supp Ei'
i=1 i=1
k

1 -1 1 _ 41«1 K
Thus X" ¢ U Gi cX. ftXY =% 00X & U Gi' Furthermore, because c
i=1 i

i=1
is minimal, by Proposition 15 {GI’GZ’GI}’ =B ,Gk} is a vertex covering

k
subgraph family of U Gi = x that is vertex connected with multiplicity
i=1

d. Thus because G, is generically d-rigid for 1 < i <k, by
Proposition 14, X! is generically d-rigid also.

The theorem follows by induction. {.E.D.



